資料分析鍊金術(六)-付出越多、愛得越深-關鍵消費忠誠模型
很多人在談感情的時候,常常因為愛,所以付出許多;而通常付出越多,這份感情也更珍貴,也越捨不得放棄這段感情。這是基於人們本性上對於損失的厭惡(或者可說是沉沒成本謬誤),所以當我投入越多的金錢或情感,這個關係也相對更為重要。而消費者與品牌的關係,是不是也會有這樣的聯結呢?
很多人在談感情的時候,常常因為愛,所以付出許多;而通常付出越多,這份感情也更珍貴,也越捨不得放棄這段感情。這是基於人們本性上對於損失的厭惡(或者可說是沉沒成本謬誤),所以當我投入越多的金錢或情感,這個關係也相對更為重要。而消費者與品牌的關係,是不是也會有這樣的聯結呢?
DATA MINING最重要的觀念也是最常用的功能就是集群(Cluster)和關聯(Correlations)。在分析資料時,可以透過消費者(或產品)不同的特性來加以集群或測量關聯,例如35-44歲消費者的消費模式類似的分群,或年紀越高購衣頻次越高這樣的關聯分析。集群或關聯本身操作都很容易,難的事前的準備工作,也就是將消費者(或產品)標上不同的特性。能蒐集的特性越多,能分析的東西也就越多。
有天老總提了個要求,希望重新設定VP客戶分群,希望將客戶分成幾群來擬定行銷策略。CRM分析一個很重要的精神就是幫客戶分群,於是這個工作理所當然地落到我們的頭上。一般我們都會利用客戶的貢獻程度來將客戶分群,但是傳統上到底要切成幾群,或是要怎麼分一直沒有個依據,所以這次我們就利用很紅的八二法則來將客戶分群。
從這篇文章開始,會陸續帶入一些常用的分析方法,雖然分析方法百百種,但是在頭一次接觸資料時,總會有個先後順序,由淺入深,由外表到內在,由粗糙的細緻。整個資料分析的報告架構就如同說故事般,透過數據引導聽眾建立對於消費者的想像。故事的第一頁通常會描寫時間季節,寫到人物時也只會初步描述人物的年齡長相,資料分析的第一個環節也由這邊展開......
雖然近年來流行將海量資料分析稱為是資料採礦(Data Mining),但是對我來說,整個資料分析的過程也很像是幾年前很紅的漫畫"鋼之鍊金術師(簡稱鋼煉)"中的煉金術。
因為剛換工作,想趁記憶猶新的時候,把所有接觸資料庫到分析流程記錄下來,作為將來自己或是其他人的參考。