摘要: 從影像辨識、語音辨識,到深度學習,各產業近年來都看好 AI 人工智慧所帶來的龐大效益,但真正能從開發走到應用的企業卻不在多數,根據 Gartner 調查,受訪企業原本預期一年之內能有 23% 的 AI 計畫完成部署,但一年後卻僅有 5% 真正被部署,究竟 AI 在落地運用上遇到什麼困境?
▲圖片標題(來源:科技報橘)
SAS 台灣業務顧問部陳新銓副總經理分析,初期從情境確認、資料分析到每一次模型部署上線,企業內部就需花費大量的時間溝通,而等到模型上線後,又會因為情境需求改變,甚至是日益增長的資料而讓模型執行環境變得不堪使用。
後期在 AI 模型管理上,許多企業會以為管理 AI 模型跟一般網頁一樣,只需要管理程式碼,但其實兩者間有很大的落差,網頁開發完成後就算放置不更新,基本功能也不會有所改變,但是 AI 模型卻會在開發完成後,隨著時間失去它的精準度。至於在 AI 開發與應用的細節上還有哪些常見迷思?
從實驗環境走向大規模 AI 應用 ,企業必經的 3 大挑戰
首先,陳新銓副總點出許多企業在發展 AI 時常會有一大迷思:耗費太多時間與精力在「模型建立」階段,然而根據 Google 所發表的一篇 AI 研究論文指出,團隊若想將 AI 從實驗環境走到實際應用,模型建立其實只佔整個 AI 開發的一小部分,後面還有更多架構與流程管理的「隱藏技術債」需解決。
再者,企業在導入 AI 應用時,通常都是從小規模專案開始進行,當有了成效後,才會進一步擴大 AI 應用的範圍或深度。陳新銓副總以某零售業者為例,起初協助他們建立 VIP 客戶最適商品預測模型,在初嚐甜頭後希望擴大規模延伸到更多客群,然而在過程中即遇到「模型數量暴增」、「機器學習團隊溝通協作不易」,和「模型準確率隨時間下降」3 大挑戰。
第一個挑戰:模型數量暴增,部署時間也暴增
例如某業者想將過去「VIP 顧客最適商品預測模型」進階應用到「各類型顧客的最適商品預測模型」,假設簡單把顧客分成 10 種客群,商品品項總共有 20 種,每一種客群或品項都要運用至少 5 種機器學習演算法,以便從中找出冠軍模型,資料科學團隊就會從過去僅須建立 1 種模型,暴增到需要建出 1,000 種預測模型,才能滿足預測需求情境!
同時,模型數量增加,工作時間也會增加,如果依照先前建立 VIP 客戶預測模型須花費 1 年時間的規劃,想完成 1,000 個模型可說曠日廢時,對企業來說是不可行的投資。
第二個挑戰:當團隊人數增加,跨部門人數多、溝通協作不易
當然,透過增加資料科學團隊的人力也是一種解方,但在實際執行時就會面臨到第二個挑戰:溝通問題,原本從資料準備、模型訓練、再到模型部署等工作,幾乎都是同一個資料科學家負責,但隨著團隊規模擴大、分工越來越細,這些工作可能由資料工程師、資料科學家、架構工程師跨部門協作,在溝通與協作上就容易出現問題。
詳見全文: 科技報橘
若喜歡本文,請關注我們的臉書 Please Like our Facebook Page: Big Data In Finance
留下你的回應
以訪客張貼回應