摘要: 去年NLP領域最火的莫過於BERT了,得益於數據規模和計算力的提升,BERT在大規模語料上預訓練(Masked Language Model + Next Sentence Prediction)之後可以很好地從訓練語料中捕獲豐富的語義信息,對各項任務瘋狂屠榜。我們在對BERT進行微調之後可以很好地適用到自己的任務上。如果想深入了解BERT的運行機制,就需要去仔細地研讀一下BERT的源碼。今天這篇文章我們來看看在BERT提出大半年之後,又有哪些基於BERT的有趣的研究。

摘要: 轉載自程序員書庫機器學習算是一個交叉領域,他涉及統計、概率、計算機科學和算法等方面,近幾年機器學習發展快速,有人就想要入門學習數據科學領域,使用機器學習(ML)技術創造產品,但是想要很好的掌握其內部的工作原理和算法,有個堅固的數學基礎是很有必要的。

摘要: Reinforcement learning is a type of machine learning in whicha computer learns to perform a task through repeated trial-and-error interactions with a dynamic environment. This learning approach enables the computer to make a series of decisions that maximize a reward metric for the task without human intervention and without being explicitly programmed to achieve the task.

摘要: 堆疊是集成多個分類法或回歸模型的方式。有很多方法可以集成模型,眾所周知的模型有Bagging或Boosting。Bagging允許多個具有高方差類似的分類模型中取平均以減少差異。Boosting建立多個增量模型,以減少誤差,同時保持方差小。

摘要: You probably used random forest for regression and classification before, but time series forecasting? Hold up you’re going to say; time series data is special! And you’re right. When it comes to data that has a time dimension, applying machine learning (ML) methods becomes a little tricky.....

摘要: Imbalanced classes are a common problem in machine learning classification where there are a disproportionate ratio of observations in each class. Class imbalance can be found in many different areas including medical diagnosis, spam filtering, and wildfire detection.

YOU MAY BE INTERESTED